Propolis Ameliorates Human Peripheral Blood Lymphocytes from DNA damage caused by Aflatoxin B₁

Hasan Türkez¹, Mokhtar I. Yousef²
¹ Department of Biology, Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey,
² Department of Home Economic, Faculty of Specific Education, Alexandria University, 21529, Alexandria, Egypt

ABSTRACT
Propolis, a natural product derived from plant resins collected by honeybees, has been used for thousands of years in traditional medicine all over the world. Its components are strong antioxidants and free radical scavengers. On the other hand, aflatoxin B₁ (AFB₁) is the most potent pulmonary and hepatic carcinogen. Since the eradication of AFB₁ contamination in agricultural products has been difficult, the use of natural or synthetic free radical scavengers could be a potential chemopreventive strategy. The biological effects of propolis are known, but its interaction with AFB₁ is not known for therapeutic uses. Therefore, this study was designed to examine the protective effects of different concentrations of propolis (6.25, 12.5, 25, 50 and 100 mg/L) against AFB₁ (3.12 ppm) genotoxicity in human lymphocytes in vitro. The genotoxic effects were assessed by micronucleus (MN) test in human blood cultures. The results of the present study indicated that AFB₁ significantly (P<0.05) increased formations of MNs in peripheral lymphocytes as compared to controls. On the contrary, propolis alone did not show genotoxic effects at the concentrations tested. Furthermore, AFB₁-induced increases in the genotoxicity indices were diminished by the addition of propolis. This anti-mutagenic effect of propolis can be attributed to its powerful scavenger ability.

Key Words: Aflatoxin B₁, antimutagenicity, in vitro, lymphocytes, micronucleus assay, propolis.

INTRODUCTION
Propolis, also known as bee glue, is a resinous hive product collected by honey bees from plant exudates and contains more than one hundred components (Newairy et al. 2009). Propolis has been used in folk medicine since ancient times and is known for its antimicrobial, antiparasitic, antiviral, anti-inflammatory, antitumoral and antioxidant properties (Nieva Moreno et al. 2000, Yousef et al. 2003, Yousef et al. 2004, Padmavathi et al. 2006, Paulino et al. 2008). Flavonoids are thought to be responsible for many of its biological and pharmacological activities (Newairy et al. 2009). On the other hand, AFB₁ is a natural contaminant produced by Aspergillus flavus and A. parasiticus species (Guzman de Pena 2007). AFB₁ is known to cause hepatotoxicity, teratogenicity, immunotoxicity and even death in animals and humans (Guindon et al. 2007). Furthermore, this mycotoxin has been classified as a carcinogenic agent for humans by the International Agency for Research on Cancer (IARC) (Guzman de Pena 2007). Reactive oxygen species (ROS) and lipid peroxidation (LPO) have been reported to be major mechanisms in AFB₁ toxicity (Shon et al. 2004, Lee et al. 2005). Thus, AFB₁ causes MN, Sister chromatid exchanges (SCE), unscheduled DNA synthesis, and chromosomal strand breaks as well as forms adducts in rodent and human cells (Groopman and Kensler 1999).

It has been pointed out that oxidative damage after AFB₁ exposure, together with hepatotoxicity or hepatocarcinogenesis could be inhibited by intake of antioxidants and/or free radical scavengers (Lee et al. 2005). At this context, propolis found to improve health and prevent serious disorders including heart disease, diabetes and cancer (Padmavathi et al. 2006, Paulino et al. 2008, Newairy et al. 2009). To our best knowledge, the role of propolis against AFB₁-induced genotoxicity in human lymphocytes has not so far been studied. Therefore, this study investigated the effect of propolis against AFB₁-induced DNA damages for improving the therapeutic gain of the propolis. So here we focused on alterations in MN formations in lymphocytes as genotoxic endpoint since MN induction in cells has been shown repeatedly to be a sensitive and specific parameter to assess both clastogenic and aneugenic potential of a test compound (Frieauff et al. 1998).

MATERIAL AND METHODS
Experimental design
The heparinized blood samples obtained from two healthy non-smoking donors with no history of exposure to any genotoxic agent. Questionnaires were given to each blood donor to evaluate exposure history; and informed consent forms were signed by each of them. Human peripheral blood lymphocyte cultures were set

* Corresponding author: hasanturkez@yahoo.com
up according to a slight modification of the protocol described by Evans and O’Riordan (1975). The heparinized blood (0.5 ml) was cultured in 6 ml of culture medium (Chromosome Medium B, Biochrom, Leonorenstr. 2-6.D-12247, Berlin) with 5 µg ml⁻¹ of phytohemagglutinin (Biochrom). The propolis samples collected from hive bee’s located in the province of Erzurum, Turkey. About 10 g of propolis was dissolved in an appropriate amount of ethanol (Merck®). The extract was evaporated and filtrated aseptically under flow cabinet. The sticky extract yielded, was used to prepare determined concentrations for applications. AFB₁ (Sigma Chemical Co., St Louis, MO, USA) (3.12 ppm) and propolis (6.25, 12.5, 25, 50 and 100 ppm) were added to the cultures just before incubation, separately and together. Each individual lymphocyte culture without AFB₁ and propolis was studied as a control group.

MN test

In order to detect the number of micronucleated lymphocytes, cytochalasin B (4.5 µg/ml, Sigma®) were added to cultures at 44th hour. At the end of the 72 h incubation period, the lymphocytes were treated with 0.075 M KCl for 8 minutes at 37°C. After three repetitive fixation with methanol/acetic acid (3:1, v/v), cell suspension was dropped onto cold slides. The slides were air-dried at room temperature and then stained with 5% Giemsa for 15 minutes. All slides were coded before scoring. The criteria for scoring micronuclei were as described by Fenech (1993). At least 2000 binucleated lymphocytes were examined per concentration (two cultures per concentration) for the presence of one, two or more micronuclei.

Statistics

The statistical analysis of experimental values in the MN test was performed by Student’s *t*-test and using the S.P.S.S. 12.0 software. Statistical decisions were made with a significance level of 0.05.

RESULTS

The ability of AFB₁ to induce MN in cytokinesis blocked cells, as well as a decrease in the MN frequency in cultures treated with propolis is reflected in Figure 1. Our results showed that propolis (at all concentrations) did not alter MN frequencies in human lymphocyte cell. Moreover, the positive effect of propolis in dose depending decreasing the incidence of MN in comparison with an unprotected level was attained when cultures were treated simultaneously with AFB₁ and propolis.

Figure 1. The rates of MN (‰) in cultured human lymphocytes exposed to AFB₁ and propolis.

AFB₁ = 3.12 ppm AFB₁; P₁ = 6.25 ppm propolis; P₂ = 12.5 ppm propolis; P₃ = 25 ppm propolis; P₄ = 50 ppm propolis; P₅ = 100 ppm propolis; ++ represents statistically significant differences from control group (P < 0.05). Values are means±standard deviation.
DISCUSSION

The results obtained by us indicate a significant increase in the ratios of MN in lymphocytes, which is in accordance with the previous reports. In similar to our finding, it was reported that frequencies of SCEs in human lymphocytes were significantly increased by AFB$_{1}$ exposure (Geyikoglu and Turkez 2005, Turkez and Sisman 2007). The genotoxic effects of AFB$_{1}$ were also established by using human, mouse and rat liver preparations (Wilson et al. 1997). In an another in vitro study, AFB$_{1}$ was found to produce genotoxic effects in human liver microsomes and human lymphocytes (Wilson et al. 1995). In addition to these in vitro investigations, Marquez et al. (1995) betrayed the mutagenicity of AFB$_{1}$ in mice using MN and SCE assays. AFB$_{1}$ toxicity was thought to be related with LPO and oxidation of DNA in vivo and in vitro (Shen et al. 1996). Thereby, this xenobiotic could contribute to the formation of the genome leading to carcinogenesis (Amici et al. 2007). Recent studies have also provided additional evidence that ROS and oxidative DNA damage may be involved in AFB$_{1}$-induced p53 and ras mutations (Shen and Ong 1996).

Our findings revealed that treatment with propolis provide anti-genotoxic effects by AFB$_{1}$ at different degree. There is considerable evidence that the propolis presents positive effects with increasing concentrations without leading to any genetic damage on human blood cells. It was established that propolis alone were non-genotoxic. The biologically fundamental macromolecules such as nucleic acids and proteins in mammalian cells defense themselves with antioxidants (Kedziora-Kornatowska et al. 2004). And it was suggested that polyphenolic components, caffeic acid (CA) derivatives and flavonoids in particular, were matter of interest for its antioxidant property (Gregoris and Stevanato 2010). It was established that the phenolic compounds did not react covalently with AFB$_{1}$, and the inhibitory effect of phenolic compounds on AFB$_{1}$-induced mutagenesis could be due to the inhibition of the activation enzymes (San and Chan 1997, Cardador-Martinez et al. 2006). CA was exhibited antimutagenic properties and this positive effect of CA was assumed to be a result of its ability to scavenge ROS (Belicova et al., 2001, Benkovic et al. 2009). Likewise, Roy et al. (2008) revealed natural phytochemicals including flavonoids might have the efficacy in reducing genotoxic effects, in scavenging ROS and in enhancing the process of DNA repair. As a matter of fact, recent studies indicated that propolis could strengthen the tissue antioxidant defense system by reducing reactive ROS and increasing main antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione peroxidase (Koyu et al. 2009, Newairy et al. 2009, Yousef et al. 2009). Again, propolis significantly decreased genotoxic effects of some agents such as doxorubicin and irinotecan due to its strong antioxidant nature (Valadares et al. 2008, Benkovic et al. 2009). So the results of this study may be attributed to antioxidant activation of propolis, as AFB$_{1}$ is known to induce mutagenic damage through oxidative stress.

Consequently, the exposure to AFB$_{1}$ should be reduced and attention paid to sources of AFB$_{1}$ in foods and food related products. Furthermore, using diets rich in propolis could be beneficial in alleviating AFB$_{1}$ toxicity.

ACKNOWLEDGEMENTS

We are grateful to volunteers for the blood samples.

REFERENCES

