Effects of Exposure to 50 Hz Electromagnetic Fields during Incubation on Some of Serum Biochemical Measures in Newly-Hatched Chicks

Alireza Lotfi1*, Habib Aghdam Shahryar2 and Mohammad Narimani-Rad1

1 Ilkhchi Branch, Islamic Azad University, Ilkhchi, IRAN
2 Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, IRAN

ABSTRACT
The aim of present study was to determine the effect of interm itted exposure to 50 Hz, 0.5 mT electromagnetic fields (EMF) during different periods of incubation on serum biochemical parameters (glucose, total cholesterol, triglyceride, uric acid and iron concentration) in newly-hatched chicks. Experimental groups were: group 1 (control), with normal incubation process and without any exposing to EMF; group 2 included eggs exposed to 50Hz, 0.5 mT EMF, 2 h daily for 0-7 day of incubation; group 3 included eggs exposed for 2 h daily from day-8 to -14 of incubation; group 4; included eggs exposed from day-15 to -21 of incubation, and group 5 included eggs exposed from day-1 to -21 of incubation (whole incubation period). Incubation condition with exception to EMF exposing, was similar for all groups. At EMF exposure time, eggs were transferred to EMF emitter set and after exposure time, eggs were transferred to their rows (setter). Blood samples obtained from newly hatched chicks were analyzed. exposure to EMF: 50 Hz, 0.5 mT during embryonic life didn’t has considerable effect on total cholesterol, triglyceride, uric acid and Fe of newly hatched chicks. In present study, the only measure with significant changes was glucose concentration that had difference between group 4 or 5 (exposed at 3rd or whole incubation period) and control group (P<0.05). It was concluded that exposure to EMF: 50 Hz, 0.5 mT during incubation with exception to glucose declining at late embryonic life (exposure at 3rd week), didn’t has any significant effect on plasma total cholesterol, triglyceride, iron or uric acid in hatched chicks.

Key Words: Electromagnetic fields, exposure, incubation, serum biochemical parameters, chicken embryo.

INTRODUCTION
Nowadays, electromagnetic field (EMF) and its hazardous or beneficial biological effects is subject of so many studies on human and animals. Exposure to EMF was studied in poultry at pre-incubation (Shams Lahijani and Sajadi 2004), during-incubation (Ingole and Ghosh 2006; Batellier et al. 2008) or post-incubation (Cuppen et al. 2007).

The environmental factors that are most critical to the optimal development of the embryo are those thatoccur during the incubation and hatching processes. Any alterations in incubation environment influences themetabolism and growth of embryos with possible consequent at post-hatch life and affect finishing outcome especially in broiler type chicken via changes in the efficiency of nutrient metabolism and utilization (Shafey, 2006, Shafey et al., 2007). At current decade, researchers have done focused on other environmental factors in hatching process such as light color (Shafey, 2006), electric fields (Shafey et al., 2007) and electromagnetic fields (EMF) (Ingole and Ghosh, 2006; Batellier et al., 2008). During rearing period, regardless to hazardous effects of fields, EMFs could apply as anti-coccidiosis agent (Elmusharaf et al., 2007).

During incubation, embryonic exposure to EMFs had detrimental effects on embryo development and hatching results (Pisiriciler et al., 2000; Batellier et al., 2008). Along with negative effect of EMFs on development, various studies had reported effects of EMFs (50-60 Hz) on blood biochemical parameters in mammalian models (Cetin et al. 2006; Anselmo et al. 2009; Lotfi et al. 2011). It was reported pulse 60Hz and 3 microtesla EMF caused hyperglycemia in pregnant rats (Anselmo et al. 2009), but exposing to continuous 50Hz EMF caused hypoglycemia in mouse (Lotfi et al. 2011). About plasma lipids, the lowering effects of extremely low frequency EMF or MF has been reported in some of past relative studies (Ocal et al. 2008), but Torres-Duran et al. (2008) and Sihim et al. (2006) didn’t have any change for plasma lipid concentration of exposed animals in their experimental works. Because of these differences between results, aim of this study was to investigation on intermitted exposure to 50 Hz, 0.5 mT electromagnetic fields during different periods of incubation on biochemical measures of blood in newly-hatched chicks, whereas this frequency of EMF was studied on hatching results in past reports.

* Corresponding author: arlotfi@gmail.com
MATERIALS AND METHODS

Design and description of EMF emitter set
The EMF producer was designed for produce EMF with 50Hz frequency and 0.5 mT intensity with using urban electric line. An adaptor 220 v to 110 v (10 A) was used for minimizing of heat production by EMF emitter coin (Fig. 1). The EMF emitter set including bobbin (80 × 10 cm), wires and metal nucleuses was put in the bottom of hatchery machine in a metal lacuna (Fig. 1).

![Figure 1. Image of EMF emitter set and exposed eggs used in present experiment that installed in bottom of incubator as EMF exposing site.](image)

Experimental groups, incubation and EMF exposing
450 fertilized eggs with similar weight were collected from commercial broiler breeder (Ross 308) farm. Experimental design was completely randomized design (CRD) with five treatment, three replicate for each one and 50 eggs for each replicate. Experimental groups were included 1) control; had normal incubation process and without any exposing to EMF, group 2) includes eggs exposed to 50Hz, 0.5 mT, 2h daily for 0-7 day of incubation, group 3) includes eggs exposed to 50Hz, 0.5 mT, 2h daily from day-8 to day-14 of incubation, group 4) includes eggs exposed to 50Hz, 0.5 mT, 2h daily from day-15 to day-21 of incubation and group 5) includes eggs exposed to 50Hz, 0.5 mT, 2h daily from day-1 to day-21 of incubation (whole incubation period).

Hatchery temperature and humidity were regulated as 37.8°C, 55% RH from day-1 to day-18, and 37.2°C, 70% RH from day-18 to day-21 (hatching). At EMF exposing time, EMF set were separated from setters (eggs in upper rows) via aluminum sheet coverage for avoiding any unfavorable exposure of other experimental groups. Also bottom of unexposed groups were covered with another aluminum sheet. At EMF exposing time (2h daily) eggs were transferred to EMF emitter set (lacuna) and after exposing period, eggs were transferred to their rows (setter). Egg transfers were done in 15 min for avoiding possible detrimental temperature change of incubation (Fig. 2).
Figure 2. Schema of incubator and EMF exposing condition.

Laboratory assays
After hatching, chicks of all groups were weighted and six chicks from each experimental group were slaughtered and blood samples were collected in acid washed tubes. Next, serum was separated via centrifuge and transferred to hematology laboratory for assay of glucose, total cholesterol, uric acid and iron (Fe) concentrations by Alyson (300, USA) auto-analyzer.

Statistical analysis
Collected data were analyzed by SAS software Ver. 9.1 and Duncan multiple Tests were applied to find significant differences among means of groups.

RESULTS

According to table1, exposure to EMF: 50 Hz, 0.5 mT during embryonic life didn’t has considerable effect on total cholesterol, triglyceride, uric acid and Fe of newly hatched chicks. In present study, the only measure with significant changes was glucose concentration that had difference between group4 or 5 (exposed at 3rd or whole incubation period) and control group (P<0.05).
Table 1. Some of serum biochemical measures in hatched chicks submitted to intermittently electromagnetic fields during incubation.

<table>
<thead>
<tr>
<th>Groups</th>
<th>EMF duration</th>
<th>Glucose (mg/dl)</th>
<th>Total cholesterol (mg/dl)</th>
<th>Triglyceride (mg/dl)</th>
<th>Uric acid (mg/dl)</th>
<th>Iron (Fe) (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unexposed</td>
<td>213.7 a</td>
<td>359.3</td>
<td>66.7</td>
<td>4.7</td>
<td>109.0</td>
</tr>
<tr>
<td>2</td>
<td>50Hz, 0.5 mT 0-7d, 2h daily</td>
<td>212.7 a</td>
<td>473.0</td>
<td>95.0</td>
<td>6.0</td>
<td>128.3</td>
</tr>
<tr>
<td>3</td>
<td>50Hz, 0.5 mT 8-14d, 2h daily</td>
<td>209.07 ab</td>
<td>342.0</td>
<td>71.6</td>
<td>5.4</td>
<td>87.0</td>
</tr>
<tr>
<td>4</td>
<td>50Hz, 0.5 mT 15-21d, 2h daily</td>
<td>184.0 b</td>
<td>312.0</td>
<td>63.3</td>
<td>4.9</td>
<td>93.6</td>
</tr>
<tr>
<td>5</td>
<td>50Hz, 0.5 mT 0-21d, 2h daily</td>
<td>183.0 b</td>
<td>350.0</td>
<td>80.0</td>
<td>4.2</td>
<td>92</td>
</tr>
</tbody>
</table>

P value - 0.0471 0.0995 0.7192 0.3220 0.3233

SEM - 8.324 29.632 12.423 0.673 13.227

Different letters (a or b) shows significant difference between experimental groups.

DISCUSSION

Exposure to high frequency or high intensity of MF or EMF (Amara et al. 2006; Lotfi and Aghdam Shahryar, 2010) because of stress induction and cortisol-releasing ability may cause increase blood glucose concentration, but intermittently exposure to low frequencies has different effect and cause blood glucose decline (Abbasi et al., 2007; Pazireh et al. 2008; Lotfi et al. 2011). In this subject, Sieroń et al. (2007) had a hypothesis that direct exposure to low frequency EMFs can change glycemic status with facilities glucose abortion by tissues and membranes permeability for peripheral glucose and in other side, insulin activity for insulin-dependent tissues. Present findings (table1) for glucose lowering effect of EMF at late embryonic life of chicks is according to Abbasi et al. (2007), Pazireh et al. (2008), and Lotfi et al. (2011) reports and also Sieroń et al. (2007) hypothesis. Lahbib et al. (2010) had shown the effects of low frequency MF on glucose and lipid metabolism are time-dependent and short-term exposure (five days) couldn’t affect plasma lipids, significantly. Whereas, fifteen days exposing period had significant effect on glucose and lipid metabolism in animal models. Zecca et al. (1998) in their study with 50 Hz and 5 microtesla EMF couldn’t record any considerable changes for total cholesterol during 8 months experimental period. In present study in agreement to Zecca et al. (1998) report in rat model, exposure to EMF: 50 Hz, 0.5 mT during embryonic life didn’t has significant effect on plasma lipids at any of exposure time; first, second or third weeks of embryonic model.

It was concluded that exposure to EMF: 50 Hz, 0.5 mT during incubation with exception to glucose declining at late embryonic life (exposure at 3rd week), didn’t has any significant effect on plasma total cholesterol, triglyceride, iron or uric acid in hatched chicks.

ACKNOWLEDGMENT

This manuscript is summarized from research project No. 88536. The financial supports for this project were provided by Young Researchers Club, Islamic Azad University, Iran.

REFERENCES

